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Abstract

This paper examines the use of graph based evolutionary algorithms (GBEAs) for optimization of heat transfer in a complex

system. The specific case examined in this paper is the optimization of heat transfer in a biomass cookstove utilizing three-

dimensional computational fluid dynamics to generate the fitness function. In this stove hot combustion gases are used to heat a

cooking surface. The goal is to provide an even spatial temperature distribution on the cooking surface by redirecting the flow of

combustion gases with baffles. The variables in the optimization are the position and size of the baffles, which are described by

integer values. GBEAs are a novel type of EA in which a topology or geography is imposed on an evolving population of solutions.

The choice of graph controls the rate at which solutions can spread within the population, impacting the diversity of solutions and

convergence rate of the EAs. In this study, the choice of graph in the GBEAs changes the number of mating events required for

convergence by a factor of approximately 2.25 and the diversity of the population by a factor of 2. These results confirm that by

tuning the graph and parameters in GBEAs, computational time can be significantly reduced.

� 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction

Optimization techniques that search a solution space

without designer intervention have become important

tools in the engineering of many thermal fluid systems.

Evolutionary algorithms (EAs) are among the most

robust of these optimization methods because the ability
to optimize many designs simultaneously makes EAs

less susceptible to premature convergence than compa-

rable gradient search methods (Goldberg, 1989). In-

spired by biology, EAs evolve populations of designs to

explore the solution space. When implemented correctly,

EAs are effective at finding good solutions to complex

problems and require less knowledge of the solution a

priori than other search algorithms. However, a large
initial population of random designs and many evolu-

tionary steps are required by EAs to find an acceptable

solution. Because of this, EAs tend to be slow and

computationally expensive. Application of EAs to

thermal systems has been successful in applications

where the system or system components can be modeled

simplistically through basic thermodynamic equations,

curve fits, or other simplified modeling techniques.

However, because of the time needed for each fitness call

to a computational fluid dynamics (CFD) solver, ap-
plication of EAs to more complex fluids and heat

transfer problems has been limited.

The use of CFD in EAs has been successful in the

optimization of some systems with flow pattern based

performance. Much of this work has been done in the

aircraft industry. Various techniques have been used to

reduce the expense, thereby enabling the use of EAs.

Typically, reduced versions of the Navier–Stokes equa-
tions that can be solved implicitly or by marching are

used to reduce the computational expense. The Euler

equations or the viscous shock-layer equations (Tanne-

hill et al., 1997) are examples of these equation sets. In

other cases, a low detail representation of the actual

geometry is used to evolve designs, and a high

detail model is used to validate and refine the solution
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(Foster and Dulikravich, 1997; Zha et al., 1997). Using

these techniques, researchers have solved several types

of problems. These include optimizing airfoils (M€aakinen
et al., 1999; Jang and Lee, 2000; Quagliarella and Vicini,
2001), heat exchangers (Fabbri, 1998; Schmit et al.,

1996), two-dimensional blade profiles (Trigg et al.,

1999), and missile nozzle inlets for high-speed flow

(Blaize et al., 1998; Zha et al., 1997). Neural networks

have been used to manipulate design structures during

evolution by fixing the velocity distribution on the sur-

face of a turbine blade so that only blades meeting

the design criteria are considered (Fan, 1998), and used
for sensitivity calculations in the evolutionary process

(Poloni et al., 2000).

A recently developed evolutionary optimization

technique, graph based evolutionary algorithms

(GBEA) (Bryden et al., submitted for publication), uti-

lizes population graphing to impose a topology or ge-

ography on the evolving solution set. In many cases in

nature, the ability of a particular member of a popula-
tion to mate and reproduce with another is limited. The

factors creating these limits vary widely and include

geographical distance, mating rituals, and others. The

effect of limiting the potential mating pool is a reduced

rate of transmission of genetic characteristics and an

increased diversity within the populations. A combina-

torial graph (or graph) G is a collection V ðGÞ of vertices
and EðGÞ of edges where EðGÞ is a set of unordered pairs
from V ðGÞ. The vertices will contain configurations

from the evolving population and the edges will desig-

nate pairs of vertices that are adjacent, so that repro-

duction and crossover may take place between them.

For additional information on graph theory, the reader

is referred to West (1996). By utilizing a graph to impose

a geography on the mating population, limits to mating

analogous to those observed in nature are created.
In previous studies (Ashlock et al., 1999; Bryden et al.,

submitted for publication) it was found using simple test

problems that the choice of graph in a GBEA can affect

the number of mating events required to solve a problem

by as much as 12-fold. Also, problems with simpler fit-

ness landscapes performed best with highly connected

graphs (10 times faster), while problems with difficult

fitness landscapes performed better (12 times faster) with

less connected graphs. This occurs because in problems

with simple fitness landscapes (e.g., a single hill), the

faster the rate of information exchange, the quicker the

optimum solution can be identified. In contrast, in
complex fitness landscapes a slower rate of information

transmittal allows good solutions more time to mature

before being challenged by competing good designs.

This allows for a more complete exploration of the fit-

ness landscape. A third group of problems that was

identified were problems in which the global optimum

was composed of the same building blocks as widely

scattered and available local optima. The GBEA needs
to find a local optima to identify the various building

blocks in the solution and then assemble them to create

the global optima. In these cases the impact of a graph

on the speed of convergence was significantly less, only a

15–20% improvement.

In this study the impact of using GBEAs on a real

engineering problem, optimization of a biomass stove, is

tested. Specifically, the time to solution and the diversity
of the population were examined. Real fluids and heat

transfer engineering problems differ from the test

problems examined in several ways. These include the

time for each system call is minutes or more rather than

1/100 s of a second, the fitness landscape is unknown,

the future work may include similar although not

identical problems, and the same problem may be re-

visited with new constraints. Because of this, GBEAs
provide a practical means to reduce convergence time.

The engineering problem examined in this paper is

the optimization of an improved EcoStove. The Eco-

Stove is a biomass cookstove used in lower income

Central American households. It is designed for en-

hanced efficiency, lower risk of injury, and reduced ex-

posure to harmful emissions. The current stove design

needs to be improved because a large temperature
variation on the cooking surface limits the effectiveness

of the stove for cooking. Field tests have determined

that adding baffles to the flow of flue gas from the fire

can enhance stove performance; however, the location

and size of the baffles for an effective design are un-

known.

In this paper, an EAs calling a three-dimensional

CFD model of the EcoStove for design assessment is

Nomenclature

C normalized encoded description of baffle de-

sign

D diversity (Eq. (2))

F fitness (Eq. (1))

T temperature

Subscripts

avg average

i cell index

q baffle design component index

r baffle design component index

s population member index
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used to find an optimal flow baffle design. This level of

detail is required because there is no simpler, lower cost

solver that can predict the surface temperature profile of

the stove. The optimization routine consists of the CFD
model of the stove and the routines for the GBEA. Star-

CDe, a commercial CFD software package, is used to

model the stove. Baffle designs are encoded into a simple

set of integers that can be manipulated by the GBEA.

Because the optimization parameters are integer-valued,

gradient based methods are difficult to use. In contrast,

EAs can handle integer-valued parameters easily.

2. Background

Nicaragua, like many other developing countries,

relies primarily on wood or other biomass fuels for

household cooking and heating needs. In 1997 fuelwood

represented about 47% of the internal gross primary

supply of energy with nearly 90% being consumed for
cooking and heating (INE, 1997). Open flame unim-

proved stoves with low efficiencies were used in more

than 95% of homes, resulting in excessive deforestation

and high fuel costs (Prole~nna-Nicaragua, 2000). Addi-
tionally, direct exposure to flue gas and biomass residue

from inefficient, unventilated stoves has been reported as

a significant cause of blindness, cancer, still births, and

birth defects (Malhotra, 1999; Barnes et al., 1994; Pan-
dey, 1998; Hong, 1994). Prole~nna-Nicaragua in conjunc-

tion with Aprovecho Research Center, has developed

and is distributing in Central America an improved

plancha stove, the EcoStove (Fig. 1). The goal of this

stove is to provide a single hot spot for quickly boiling

water, while maintaining the rest of the stove surface at

an even temperature for cooking tortillas or simmering

foods. This stove reduces the risk of disease by chan-
neling the flue gas to the outdoors via a duct after

heating a cooking surface in an enclosed chamber while

maintaining relatively high efficiency. However, the de-

sign needs to be improved because the cooking surface

has a large temperature variation, with temperatures as

cool as 150 �C in some regions and as hot as 600 �C in

others. The overall surface temperature is set by the

users by varying the fuel feed rate, but the relative
spatial temperature variation is unaffected by the fuel

rate.

Attempts to improve the effectiveness of the EcoStove

in the field found that extending baffles from the cook-

ing surface into the heating chamber alters the flow in

the chamber and the temperature profile of the surface.

However, the sophisticated nature of the fluid flow

within the heat exchange chamber makes determination
of the most effective number of baffles with the correct

size, location, and orientation difficult to attain through

a ‘‘cut-and-try’’ process. Additionally, the baffle stoves

must remain easy and inexpensive to manufacture be-

cause the tooling and energy resources needed for con-

struction of the handmade stoves are limited. This need

is in conflict with the tendency of people to increase the

complexity of a design to solve problems encountered
during experimental design iteration.

3. The computational model

The geometry of the flow area within the plancha

stove is a simple rectangular prism representing the

54 cm� 54 cm� 2:5 cm heat exchange chamber cou-
pled to the furnace chamber and exhaust duct. Com-

bustion within the combustion chamber was not

modeled. Instead, the inlet air velocity and temperature

conditions were determined from in-field measurements,

and the resulting CFD solutions were compared with

experimental results. Inlet air with a velocity of 3.88 m/s,

a temperature of 977 K, and a density of 0.357 kg/m3

was found to effectively simulate flue gas leaving the
biomass fire chamber. Turbulence was modeled using

the K–� model with an intensity of 0.1 and an entrance

length of 0.0476 m. Resistance to heat transfer from the

cooking surface was modeled using a heat transfer co-

efficient of 20 W/m2 K, a thermal conductivity of 30 W/

mK, and a surface thickness of 1.6 cm. The remaining

surfaces of the model were assumed to be adiabatic to

simulate the pumice insulation used in the stove con-
struction. In order to capture two-dimensional heat

transfer effects within the plate, use of a model that in-

cluded three-dimensional heat transfer through the me-

tal plate for a cooking surface was considered. However,

including three-dimensional heat transfer in the model

significantly increased the convergence time; and the

temperature values differed by only a few degrees ev-

erywhere on the cooking surface. Full details of the
computational model are available in Urban (2001).

Fig. 2 shows the resulting geometry and Fig. 3a

shows the CFD solution for the current EcoStove sur-

face profile without baffles. Fig. 3b shows the surfaceFig. 1. Schematic of plancha EcoStove.

K.M. Bryden et al. / Int. J. Heat and Fluid Flow 24 (2003) 267–277 269



temperature profile for the unbaffled stove from the

experimental data collected in Nicaragua. For each

configuration examined, the experimental data was

gathered from a locally manufactured stove operated by
a Nicaraguan woman for cooking. The fuel feed rate

was held constant and the stove was allowed to heat for

one and half hours. Following the heatup three sets of

data were taken. Each data set required approximately

10 min to collect, and there was a 5 min break between

the data sets. Temperatures were taken on a centered

11� 11 grid with grid points 5 cm apart. This provides

120 grid points because one point falls in the exhaust
chimney. In general the repeatability of the experimental

values was good with less than 25 �C difference between

repeated measurements. As shown, the agreement be-

tween the measured values and the calculated values is

excellent. The average temperature difference between

the two sets of data is 10 �C. The largest differences

between the computational data and the measured data

occur in the corners where the computational data
predicts a higher temperature than is measured by 20–35

�C. This occurs because three-dimensional conduction

to the structural supports is not included in the model.

This is acceptable because the cooler corner tempera-

tures do not impact the area available for cooking tor-

tillas or the overall temperature profile of the stove. To

ensure that the model was able to accurately predict the

temperature profiles of the final designs, following the

computational modeling the recommended designs were

tested in Nicaragua under the same conditions as the
unbaffled stove. Fig. 4a and b show the results of this

testing for one of the designs for the calculated and

measured data respectively. The average temperature

difference between the two sets of data is 13 �C. As with
the unbaffled stove the largest temperature differences

occur in the corners of the stove. The model accurately

predicted both the temperature pattern and the rise in

average temperature from the unbaffled stove to the
baffled stove (75 �C predicted and 71 �C measured) due

to exposing more of the stove surface to the hot com-

bustion gases. The fuel feed rate sets the overall tem-

perature of the stove. The baffled stove reduces fuel

consumption in two ways; (1) more of the stove surface

is available for cooking, reducing the cooking time, and

(2) same average temperature can be achieved with a

lower wood feed rate.
The CFD calculations for design evaluations of the

EcoStove designs are the most computationally expen-

sive portion of the EA. More than 95% of the compu-

tation time is spent running CFD calculations. In

general, faster computers have not reduced computation

time for CFD solutions because engineers typically ex-

change the possible time saving for more detailed

equation sets or higher resolution grids. More refined
solutions are desired because they offer engineers a

better understanding of the flow behavior and a better

feel for how to improve a system. EAs, however, do not

need to gain an understanding of the physics of the

problem to find a good solution. Rather, the algorithm

only aims to ‘‘learn’’ which pieces of the structure result

in designs that better satisfy the fitness criteria. There-

fore, the algorithm only requires enough detail in the
model to reliably determine which structures are better

than others. Because a high resolution CFD model has

been verified experimentally, the lowest resolution grid

with a solution that reasonably matches the high reso-

lution solution and the field results is the best model for

coupling to the EA.

Nine models with different grid resolutions for the

EcoStove geometry were created to test for matching

Fig. 4. Predicted (a) and measured (b) temperature distribution for a

proposed baffled stove.

Fig. 2. Geometry used in CFD model.

Fig. 3. Predicted (a) and measured (b) temperature distribution for an

unbaffled stove.
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temperature profiles. The highest resolution grid had

240 cells along the edges of the cooking surface. The

number of cells on the remaining grids were chosen such

that the physical location of all the grid points share a
location with a grid point on the high resolution grid.

This was done to simplify comparison of the tempera-

ture profiles. Table 1 shows accuracy and time to con-

vergence as a function of the number of cells.

The accuracy of the models was determined by

summing the absolute difference in normalized temper-

ature values at each grid point on the cooking surface

and dividing by the number of cells. The temperatures at
locations of grid points in the high resolution model that

were not present on lower resolution models were de-

termined using Gauss–Seidel iteration.

Fig. 5 shows the error and convergence time for each

of the models. Both a stove with no baffles and baffled

stove were examined to ensure that the lower resolution

model remains a good predictor of performance when

baffles are placed in the heating chamber. As shown, the

error rises rapidly when the number of cells drops below

40 cells along the edges of the heating chamber, while
the time to convergence rises quickly above 30 cells.

As seen in Table 1, the 30 cell stove model tested has

only five baffles along the chamber depth while the 40

cell stove has 10. A 30� 30� 10 cell model had a sur-

face temperature profile error of 7.6% for the unaltered

stove and 11.2% for the baffle stove. The time to con-

vergence was 36 s shorter for the 30 cell unaltered model

and 250 s longer for the 30 cell baffle model than the
40� 40� 10 model. A 42� 42� 6 cell model was ex-

amined and resulted in 7.3% and 11.2% error for the

unaltered and baffled cell models respectively. However,

the convergence time was significantly less (90 s) than

the 40� 40� 10 model or the 30� 30� 10 model.

Based on this, the 42� 42� 6 model was chosen as the

best model for the fitness evaluation. Following com-

pletion of the optimization, the proposed solutions were
analyzed using high density grids to validate the solu-

tion.

To ensure that only designs that can be easily hand-

built and produced are considered, baffle orientation is

limited to those welded perpendicular to the cooking

surface and parallel to the heating chamber walls. Five

values are needed to completely describe a baffle�s lo-
cation, length, depth, and orientation. As shown in Fig.
7, the five values are the starting x and y position of the

baffle with respect to the lower left corner of the surface,

the orientation of the baffle, the length of the baffle, and

the depth the baffle penetrates into the flow field. Each

of the values are in units of number of cells except baffle

orientation, which is determined by an integer between

zero and three that represents a baffle moving right, left,

up, or down from the starting position. A two-dimen-
sional array is used to represent multiple baffles with the

five baffle definition values stored along a column and

individual baffles stored in rows. The number of baffles

in a particular design was limited to five to ensure the

ease of manufacture.

4. Graph based evolutionary algorithms

GBEAs utilize a graph to establish a geography for

the population of evolving solutions. The effectiveness

and cost of evolved solutions depend on the rate of in-

formation transmitted within the population and the

population diversity preserved. Many of the designs in

small population EAs begin to have the same design

features, and valuable diversity is lost. Island EAs (Ve-
keria and Parmee, 1997; Whitely, 1989) have been suc-

cessfully used in some applications to overcome this

problem. By establishing independent groups of small

populations, the solutions can still evolve quickly and

Table 1

Number of cells in grid resolution case study models

Number of

cells along

surface

edge

Number of

cells for depth

of cooking

chamber

Total number

of cells

Convergence

time (s)

240 30 1,949,184 109,845

120 15 233,160 13,199

80 10 76,672 2391

60 10 48,288 1040

48 10 29,952 594

40 10 22,912 497

30 5 11,412 232

24 5 5952 139

20 5 5072 85
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Fig. 5. Accuracy and convergence time as a function of grid size.
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still have a chance that innovation will survive. Popu-
lation graphing is a variation of this technique that also

helps maintain diversity in small populations by slowing

the early replacement of less fit designs; giving them a

chance to evolve before competing with other designs.

Population graphing does not, however, require multi-

ple sets of mating rules. In this method, each design in

the population is placed on a node in a graphically

connected topology for which the design is only allowed
to mate with neighboring nodes. Because all designs are

members of the same topology, each design still has the

opportunity to have an influence on any other design,

but the evolution must occur along a path. This gives

promising, but less evolved designs extra time to fine-

tune and evolve into more fit designs.

Four possible graphs were tested to determine which

graph is best for use in this optimization problem. These
graphs, shown in Fig. 6, were selected for having dif-

ferent levels of connectivity and for exhibiting diverse

behavior in previous EA studies. In order of connec-

tivity from least connected to most are the cycle, 16� 3

Peterson, 8� 4 torus, and five-dimensional hypercube

population graphs. In tournament selection (Miller and

Goldberg, 1995) a number of designs are chosen ran-

domly from the entire population. The first design
chosen always participates in mating while one other

member is chosen randomly from the group in direct

proportion to design quality. These two designs then

reproduce via the crossover and mutation operators,

resulting in two new designs that replace the worst two

of the four designs participating in the mating. This

results in rapid information spread throughout the

population. In contrast, in population graphing mating
(Ashlock et al., 1999; Bryden et al., submitted for pub-

lication), an initial design is chosen randomly from the

population, and the topologically connected neighbors

are identified. The initial design then reproduces with a

design from the neighbor group in direct proportion to

design quality. As in tournament selection, the two new

designs replace the two worst from the group consisting

of the initial design and its neighboring group. This can
significantly slow the rate of information spread.

In both mating schemes, the new designs replacing

less fit designs often contain features of the better de-

signs in the mating group. In tournament mating, any

design can influence any other less fit design at any time

during evolution. In population graphed mating, how-

ever, the influence must propagate along the graphical

Fig. 6. Graphical topologies used in this study.
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population structure to change remotely located designs,
leaving time for other promising solutions to evolve

independently. When low connectivity graphs are used,

change propagates slowly because there are longer and

fewer possible paths to reach another design, leaving

more time for independent evolution. With high con-

nectivity, propagation happens more quickly because

there are many possible and shorter paths. Additionally,

the mating groups for the different graphs are different
sizes because nodes have different numbers of neighbors.

Because of this, a different percentage of the mating

group is replaced in each mating event for different

graphs. The effect of this on the efficiency of evolution is

problem dependent and is part of the authors� continu-
ing research.

The initial population of designs is generated ran-

domly. Reproduction is simulated in crossover. In
crossover, a baffle is chosen at random, and all the

baffles later in the baffle list are swapped between the

two members. Fig. 8 shows the crossover process used in

this algorithm for three baffles. As shown, the point at

which crossover can occur in the baffle structure is one

of two places either before the second baffle or before

the third baffle. In Fig. 8 the last baffle is exchanged

between parents 1 and 2 to create the two children. By
making small, random changes to the data structures

mutation is simulated. There are two types of muta-

tion––baffle mutation and list mutation. In baffle mu-

tation one of the five baffle definition values is chosen

randomly from a randomly chosen baffle and replaced

with a new value. In list mutation a randomly chosen

baffle is replaced with an entirely new random baffle.

Population members are chosen randomly to participate
in evolution with preference given to the most fit

members. The resulting new designs replace the less fit

designs. All baffles were checked following crossover

and mutation to ensure that they were sensible; i.e.,

there were no regions of completely blocked flow and no

baffles sticking out of the side of the stove. Baffles that

were not sensible were replaced by another baffle created

by the same process rather than chopping or other

modification. This ensured that the random nature of

the baffle mutation was preserved and prevented
‘‘building up’’ baffles at the edge of the design.

5. Fitness function

The fitness function used to assess the evenness of

surface temperature is

F ¼
P

ðTi � TavgÞ2P
ðTi � TavgÞ2junbaffled

ð1Þ

where F is the fitness. The values for Tavg, the average

temperature of the surface, and Ti, the temperature of

Fig. 7. Baffle structure encoding scheme.

Fig. 8. Diagram of crossover operator.
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each of the cells on the cooking surface, are obtained
from the CFD solution. In this equation, lower fitness

values indicated better solutions. The entire cookstove

surface except the area above the flue gas inlet and the

area occupied by the chimney are used in the fitness

calculation. As shown, the fitness function is normalized

by the performance of the unbaffled stove. Because of

this, designs with values >1 are worse than the unaltered
stove, and designs with values <1 are better than the
unaltered stove. A value of 0 indicates a completely even

temperature distribution. Fig. 9 shows the approximate

relationship between the fitness function and the usable

area. The primary purpose of these stoves is for cooking

tortillas. Therefore, the more surface area that is avail-

able and contiguous within the desired temperature

range, the more effective the stove. However, corners do

not provide additional cooking area for tortillas, and
hence stove effectiveness as a function of cooking area is

as shown qualitatively in Fig. 10. If the available

cooking area drops too low, no area is large enough to

effectively cook tortillas, and there is a point beyond

which additional surface area does not result in more

effective cooking. Based on this, the optimization pro-
cess was considered complete when the best design

reached a fitness of 0.2. This corresponds to a usable

area of approximately 90% and a fully effective stove.

6. Implementation and results

For each of the population graphs, four EA runs for
2000 mating events and a population size of 32 members

were completed. As noted earlier, the problem was

considered solved when the fitness of the best solution

dropped below 0.2, at which point the number of mating

events were recorded. The computation was continued

so that the impact of individual graphs on diversity

could be investigated. The best fitness value and the

diversity were recorded as a function of mating event.
This diversity is used to compare the ability of the graph

to maintain a diverse population, and the best fitness

value is used to compare the ability of the graph to aid

the EA in finding a good solution. The diversity was

calculated by normalizing each component of the en-

coded description of the stove design from 0 to 1 and

then calculating the average pair-wise distance between

population members of the population by

d ¼
P32

q¼1
P32

r¼qþ1
P15

s¼1ðCs;q � Cs;rÞ2
h i1=2

½15	1=2
P31

q¼1 q
ð2Þ

where d is diversity, and Cs;q is the value of item s of
the encoded description for population member q. The
measure is normalized by the maximum Euclidean dis-

tance for the encoded description,
ffiffiffiffiffi
15

p
.

Fig. 11 shows four representative designs obtained

from the optimization routine for the hypercube, torus,
Peterson, and cycle graphs. On average 90% of the

plancha cooking area is within 75 �C of the average

temperature, as opposed to 35% of the unaltered stove.

Temperature control of the stove surface is based on the

feed rate, and the improved design can reach the same

cooking temperatures with less fuel, providing a more

efficient stove. This occurs because short circuiting of

the hot incoming gases to the exhaust chimney is elim-
inated, reducing the temperature of the exhaust gases

and energy loss associated with the exhaust gases.

As shown, all of the baffle structures contain one

long, thick baffle blocking the direct flow from inlet to

outlet that separates the flow into left-moving and right-

moving streams. The two remaining baffles are used to

vary the resistance of the two streams. None of the

baffles penetrate completely into the flow field. The long
baffle and the baffle on the left side of the inlet penetrate

2 cm into the 2.5 cm thick chamber, while the remaining
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Fig. 9. Usable area as a function of normalized fitness (f ).
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Fig. 10. Plancha stove effectiveness as a function of usable area (f ).
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baffle penetrates 1.0–2.0 cm into the flow depending on

the design. The common features of these designs sug-

gest that it may be possible to develop a set of guidelines

for creating good designs for a variety of sizes and

shapes of plancha stoves.

Fig. 12 shows the average of the best fitness for each
of the four runs every 20 mating events. Fig. 13 shows

the average diversity of the population for the four runs.

As shown, the hypercube and torus graphs converge

rapidly to a solution while losing significant diversity in

the population. The Peterson graph converges next, and

the cycle graph converges next. As shown in Table 2, the

cycle graph converges in 1160 mating events while
the hypercube graph converges in 520, approximately

Fig. 11. Representative baffle designs found at f ¼ 0:2. Solutions shown were evolved from the cycle (a), Peterson (b), torus (c), and hypercube

(d) families. The horizontal and left baffles are 2.0 cm deep in all cases, the right baffle is 1.0, 1.5, 1.5, and 2.0 cm deep for solutions (a), (b), (c) and

(d), respectively.
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Fig. 12. Normalized fitness (f ) of the best population member as a

function of number of mating events for each graph family.
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2.25 times faster. The order of convergence matches the

degree of connectivity of the graphs––hypercube, torus,

Peterson, and cycle––from most connected to least

connected. Additionally, the order of convergence is the
inverse of the diversity. As shown in Fig. 13, the least

diverse population after 2000 runs is the hypercube

(diversity coefficient ¼ 0:157), followed by the torus

(diversity coefficient ¼ 0:167), the Peterson (diversity

coefficient ¼ 0:240), and the cycle (diversity coeffi-

cient ¼ 0:302). These results indicate that the earlier

results based on simple test cases can be extended to

more complex engineering problems of practical inter-
est. The earlier study problems with simple fitness saw

significant speedup (10 times or greater) by choosing a

highly connected graph. Problems in which the global

optimum is composed of the same parts as the local

optima had much less speedup (15–20%). In this case the

fitness is a mixture of these characteristics, and the re-

sults indicate good speedup (2.25 times) using a highly

connected graph with performance dropping as con-
nectivity of the graph decreases.

The less connected the graph, the more diverse the

population. This diversity is essential in finding the

global optimum in very challenging fitness landscapes.

In these cases highly disconnected graphs (e.g., cycle

graph) permit local good solutions to develop before

encountering other locally good solutions and provide a

more thorough search of the design space. The persis-
tence of this diversity even after convergence of the

GBEA is surprising and highlights the differences in the

graphs. The graphs provide a means to tune the ratio of

information transmittal and the diversity to minimize

the number of mating events to reach a solution. This is

particularly useful if some information is known a priori

about the fitness landscape, or if the problem will be

repeated with differing constraints but with similar fit-
ness landscapes. In the case of this problem, a speedup

of 2.25 times reduces the completion time for a single

run from approximately eight days to three days on a 24

processor Onyx 2.

7. Summary and future work

GBEAs have been shown to be extendable to a

complex, real engineering problem. Particularly in cases

in which the fitness function evaluation call is time

consuming the computational time can be significantly

reduced, by tuning the graph and parameters in a

GBEA. In this study the spatial variation of the surface

temperature of a plancha stove was minimized. The
fitness evaluation routine involved a time consuming call

to a CFD program. Because of this, the time savings

available are particularly important. However, in many

problems, including this one, the shape of the fitness

landscape is not known a priori. Additional research

work is needed to explore several aspects of GBEAs.

These include (1) the development of a simple test or

methodology to predict the optimum graph needed for a
specific problem, (2) determining if there is a preferred

way to select topological neighbors based on the vari-

ables used, and (3) the development of ways to control

the rate of information spread within a graph. All of

these issues require that a measure of connectivity within

a GBEA be developed. Currently, there are several

measures of connectivity in a graph. The fraction of

possible edges present in the graph, the diameter of the
graph, the classical connectivity (number of edges re-

quired to disconnect the graph), and more exotic mea-

sures such as cycle connectivity. None of these measures

of connectivity accounts for all the behavioral gradients

observed, although diameter tends to correlate best.

Development of this new notion of connectivity in the

presence of both a selection gradient and variation

supplied by mutation and crossover is part of our on-
going research.
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